PRODUÇÃO DE BIODIESEL UTILIZANDO ÓLEO DE SOJA DA CANTINA DO IFES, CAMPUS CACHOEIRO DE ITAPEMIRIM-ES

Ingrid Larissa Alves¹, Felipe Mozer², Fabielle Castelan Marques³

¹Ifes, Campus Cachoeiro de Itapemirim, Coordenadoria de Eletromecânica— Fazenda Morro Grande, Rodovia BR 482 - CEP 29300-970 — Cachoeiro de Itapemirim — ES - indy_lala@hotmail.com

² Ifes, Campus Cachoeiro de Itapemirim, Coordenadoria de Eletromecânica— Fazenda Morro Grande, Rodovia BR 482 - CEP 29300-970 — Cachoeiro de Itapemirim — ES - f-mozer@hotmail.com

Resumo: A maior parte de toda a energia consumida no mundo provém do petróleo, do carvão e do gás natural. Essas fontes são limitadas e com previsão de esgotamento no futuro, portanto, a busca por fontes alternativas de energia é de suma importância. Uma matéria prima de grande interesse na produção de biodiesel são os óleos e gorduras residuais. Este material é considerado resíduo e todos os meses são produzidos, em média, por residências da cidade de Cachoeiro do Itapemirim – ES, 103 m³ de óleo e gordura. O presente projeto tem como objetivo, produzir biodiesel, utilizando o óleo de soja usada para uma possível aplicação na indústria local, diminuindo assim a emissão de resíduos e do consumo de combustíveis fósseis. O material de partida, bem como o biodiesel obtido pela reação de transesterificação foi analisado em seus parâmetros mais importantes tais como: densidade, viscosidade, índice de acidez, índice de iodo, índice de saponificação e espectroscopia UV-Vis. O rendimento da reação foi de 84,71% para o biodiesel proveniente do óleo in natura e 81,39% no biodiesel proveniente do óleo residual.

Palavras-chave: Transesterificação, Biodiesel, Óleo de soja usado

INTRODUÇÃO

Uma alternativa possível ao combustível fóssil é o uso de óleos de origem vegetal, os quais podem ser denominados de "biodiesel" (GERIS et al, 2007). O consumo de Óleo de soja, por exemplo, vem crescendo cada vez mais, por tanto será uma alternativa a transformação deste em Bicombustível.

O principal objetivo deste trabalho foi produzir Biodiesel (éster etílico) por via catalítica, utilizando o óleo de soja usado em frituras da cantina do Ifes, Campus Cachoeiro de Itapemirim para uma possível aplicação no maquinário da instituição, diminuindo assim a emissão de resíduos e do consumo de combustíveis fósseis.

RESULTADOS E DISCUSSÃO

A maior intenção da reação de transesterificação, transformação de triglicerídeos em moléculas menores de éster de ácidos graxos é a diminuição da viscosidade, pois com a alta viscosidade do óleo vegetal apresenta problemas na sua aplicação em motores a diesel. No entanto, a reação modificou outros parâmetros, os quais são mostrados na Tabela 1 abaixo:

Características	Unid.	Val. referência	Biodiesel Residual I	Óleo Residual
Massa específica a 20° C	kg/m ³	850-900	861	922
Viscosidade Cinemática a 40°C	mm ² /s	3,0-6,0	7,3	36,6
Índice de acidez, máx.	mg KOH/g	0,50	1,59	0,46
Índice de lodo Índice de saponificação	g/100g mg/g	Anotar Anotar	83,99 207,85	89,38 190,21
Teste de umidade	mg/kg	500	2838,41	164,51

Tabela 1: Parâmetros físico-químicos analisados na amostra, no biodiesel e os valores de referência Resolução ANP n° 7 (2008)

Massa Específica

A densidade do biodiesel está diretamente ligada com a sua estrutura molecular. Quanto maior o comprimento da cadeia carbônica do alquiléster, maior será a densidade, no entanto, esse valor decrescerá quanto maior for o número de insaturações presentes na molécula, pois menor será a interação entre as moléculas. No atual trabalho houve uma queda satisfatória na densidade, obedecendo aos parâmetros da ANP (Agência Nacional do Petróleo).

Viscosidade Cinemática

Viscosidade é a resistência apresentada por um fluido à alteração de sua forma, ou aos

³ Ifes, Campus Cachoeiro de Itapemirim, Coordenadoria de Informática— Fazenda Morro Grande, Rodovia BR 482 - CEP 29300-970 — Cachoeiro de Itapemirim — ES — fabiellec@ifes.edu.br

movimentos internos de suas moléculas e indica sua resistência ao escoamento. Sendo que é de suma importância que ocorra a diminuição da viscosidade, afinal tem influência no processo de queima na câmara de combustão do motor. A viscosidade do biodiesel aumenta com o comprimento da cadeia carbônica e com o grau de saturação. а reação, apesar de consideravelmente, а viscosidade alcançou o valor padrão, supôs-se que seja devido a traços remanescentes da glicerina, fator principal da alta viscosidade no óleo de soja, até porque a síntese do biodiesel, proveniente tanto do óleo residual quanto do in teve rendimento natura seu aproximadamente 80%, o que significa que a reação não ocorreu por completo ou a purificação não teve a eficiência necessária. restando resíduos indesejáveis. Além disso, segundo o teste de umidade, existe no biodiesel presença de água.

Índice de Acidez (IA)

No caso do índice de acidez, é muito importante a medida quantitativa dos ácidos graxos livres para que seja determinado o grau de deterioração. Outro efeito importante decorrente do aumento do teor de ácidos graxos livres é o abaixamento do ponto de fumaça do lipídio, com reflexos sobre a sua inflamabilidade (OSAWA et al., 2006). Entende-se então que quanto mais baixo for o índice de acidez maior será a qualidade da amostra.

O valor encontrado para o óleo residual, antes da reação, foi 0,460 mg KOH/g. Esse é um valor adequado para transformação do óleo em biodiesel, visto que um excesso de ácidos graxos livres, quando se usa hidróxidos como catalisador, levaria a reação de saponificação, competindo com a reação de transesterificação. Após a transesterificação, houve um aumento no valor do índice de acidez que pode ser consequencia da formação de ácidos graxos livres durante a reação, ou a presença de ácido clorídrico utilizado no processo de purificação.

Índice de Saponificação (IS)

O índice de saponificação é a quantidade de álcali necessário para saponificar uma quantidade definida de amostra. A sua determinação tem importância devido à relação entre o índice de saponificável e o comprimento da cadeia dos resíduos de ácidos graxos. O valor encontrado para o índice de saponificação foi 190, 21 mg/g, um valor próximo do valor limite para o óleo de soja, indicando que o material de

partida pode ter sofrido reações de hidrólise, liberando os ácidos graxos correspondentes, em consequência da utilização como líquido de transferência de calor para os alimentos (fritura).

Índice de lodo (II2)

O número de insaturações não tem apenas efeito nos valores de densidade e de viscosidade dos biodieseis, mas também é de grande importância na estabilidade oxidativa desse biocombustível (LOBO et al., 2009). O valor encontrado para o material de partida foi de 89,38g l₂/100g, esse valor indica que o óleo sofreu pouca degradabilidade, ora por termooxidação, ora por ataque de radicais livres em suas insaturações. Após a realização da síntese os valores do teste de iodo quase não foram alterados, o que é comum uma vez que feita a síntese nada se altera na composição das insaturações.

CONCLUSÃO

A etapa da síntese foi concluída obtendo o rendimento de 84,71% no biodiesel proveniente do óleo *in natura* e 81,39% no biodiesel proveniente do óleo residual, resultado considerado satisfatório. Novos estudos poderão ser realizados com o objetivo de melhorar a qualidade do produto e assim aplicar no maquinário local, diminuindo então o impacto ambiental.

Agradecimentos

Os autores deste trabalho agradecem ao programa PIBIT-Ifes.

REFERÊNCIAS

ANP, Agência Nacional do Petróleo Gás Natural e Biocombustíveis. Brasília, 2008. Disponível em: http://www.ellocombustiveis.com.br.3.2008_dou20.3.2008.pdf Acesso em: 22 de set. de 2009.

GERIS, R. et al. Biodiesel de Soja – Reação de Transesterificação para Aulas de Química Orgânica. Química Nova, 30, 5, 1369-1773,2007.

LOBO, I. P.; FERREIRA, S. L. C.; CRUZ, R. S. da. *Biodiesel: parâmetros de qualidade e métodos analíticos.* **Quím. Nova.** 2009, v.32, n.6, p. 1596-1608.

OSAWA,C. C; GONCALVES, L. A. G.; RAGAZZI, S. *Titulação potenciométrica aplicada na determinação de ácidos graxos livres de óleos e gorduras comestíveis.* **Quím. Nova**. 2006, v.29, n.3, p. 593-599.